WebJun 20, 2008 · The derivatives to any order of the confluent hypergeometric (Kummer) function F = F 1 1 ( a, b, z) with respect to the parameter a or b are investigated and … WebApr 8, 2024 · Abstract Series containing the digamma function arise when calculating the parametric derivatives of the hypergeometric functions and play a role in evaluation of Feynman diagrams. As these...
derivative of hypergeometric function - Mathematics Stack …
WebIt is an easy exercise to show that the derivative of a hypergeometric series can be expressed as follows: d d x n F m ( a 1, …, a n; b 1 … b m; x) = a 1 ⋯ a n b 1 ⋯ b m n F m ( a 1 + 1, …, a n + 1; b 1 + 1 … b m + 1; x). From the other hand, for an arbitrary function G ( x) we have ( log G ( x)) ′ = G ′ ( x) G ( x). Web1 Answer Sorted by: 20 In general the answer is no. In the case at hand, however, the parameters are special and this becomes possible. One can use, for instance, the standard integral representation of the hypergeometric function to show that 2 F 1 ( 1 2, a, 3 2, − 1) = 1 2 ∫ 0 1 d t t ( 1 + t) a, which in turn yields flight type coach vs economy
Study of Generalized k−hypergeometric Functions
WebNov 11, 2024 · A way to evaluate the derivative relatively to one parameter is to start with Euler's integral representation of the hypergeometric function and compute a partial … WebMay 25, 2024 · Hypergeometric functions are among most important special functions mainly because they have a lot of applications in a variety of research branches such as (for example) quantum mechanics, electromagnetic field theory, probability theory, analytic number theory, and data analysis (see, e.g., [1, 2, 4–6]). In mathematics, the Gaussian or ordinary hypergeometric function 2F1(a,b;c;z) is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear ordinary differential equation (ODE). Every second-order linear … See more The term "hypergeometric series" was first used by John Wallis in his 1655 book Arithmetica Infinitorum. Hypergeometric series were studied by Leonhard Euler, but the first full systematic treatment was … See more The hypergeometric function is defined for z < 1 by the power series It is undefined (or … See more Many of the common mathematical functions can be expressed in terms of the hypergeometric function, or as limiting cases of it. Some typical examples are See more Euler type If B is the beta function then provided that z is … See more Using the identity $${\displaystyle (a)_{n+1}=a(a+1)_{n}}$$, it is shown that $${\displaystyle {\frac {d}{dz}}\ {}_{2}F_{1}(a,b;c;z)={\frac {ab}{c}}\ {}_{2}F_{1}(a+1,b+1;c+1;z)}$$ and more generally, See more The hypergeometric function is a solution of Euler's hypergeometric differential equation which has three See more The six functions $${\displaystyle {}_{2}F_{1}(a\pm 1,b;c;z),\quad {}_{2}F_{1}(a,b\pm 1;c;z),\quad {}_{2}F_{1}(a,b;c\pm 1;z)}$$ are called … See more great email usernames